

AMPS Workshop: Unlocking the Potential of SOC Technologies for a Decarbonized Future

Integrated DRI-SOEC systems for green steel - HySteel project

in the framework of the AMPS project

The project is supported by

the Clean Hydrogen Partnership

WORKSHOP AGENDA

POLITECNICO

MILANO 1863

Roberto Scaccabarozzi (LEAP)

Industrial sector - Energy demand and CO₂ emissions

CO

Table A.2a: World final energy consumption

				:	Stated Po	licies (EJ)	Sh	ares (%)	CAAG 202	R (%) 3 to:
	2010	2022	2023	2030	2035	2040	2050	2023	2030	2050	2030	2050
Total final consumption	377	437	445	485	499	509	533	100	100	100	1.3	0.7
Industry	143	170	173	133	200	204	209	100	100	100	1.6	0.7
Electricity	27	33	39	47	50	53	58	22	25	28	3.0	1.5
Liquid fuels	29	34	34	40	41	42	43	20	20	20	2.1	0.8
Oil	29	34	34	40	41	42	42	20	20	20	2.1	0.8
Gaseous fuels	24	32	33	36	38	40	42	19	19	20	1.6	0.9
Biomethane	0	0	0	0	1	1	2	0	0	1	16	12
Hydrogen	-	0	0	0	0	0	0	0	0	0	44	20
Unabated natural gas 🤈 🕇	102 ¹	28	29	32	33	20 ³⁴	34	17	17	16	1.4	0.6
Natural gas with CCUS 🗲 上	• • /%	0	0	0	6.	5/0	0	0	0	0	13	8.0
Solid fuels	58	58	59	60	60	59	57	34	31	27	0.3	-0.1
Modern solid bioenergy	8	11	11	13	14	15	16	6	7	8	2.3	1.5
Unabated coal	48	44	45	44	43	41	38	26	23	18	-0.3	-0.6
Coal with CCUS	-	0	0	0	0	0	0	0	0	0	29	8.8
Heat	5	8	8	10	10	10	9	5	5	4	1.8	0.3
Chemicals	37	43	50	58	61	63	63	29	30	30	2.1	0.9
Iron and steel	31	36	37 -	37	37	37	36	21	19	17	0.2	-0.1
Cement	9	12	12	12	12	12	12	7	6	6	0.0	0.0
Aluminium	5	7	7	7	8	8	8	4	4	4	0.7	0.3
Transport	101	118	122	132	133	134	140	100	100	100	1.1	0.5
Buildings	111	125	124	132	137	141	153	100	100	100	0.9	0.8

FOUNDED IN 2005 BY POLITECNICO DI MILANO

Table A.4a: World CO₂ emissions

					Stated Polici	es (Mt CO ₂)		CAAG 202	R (%) 3 to:
	2010	2022	2023	2030	2035	2040	2050	2030	2050
Total CO ₂ *	32 805	37 230	37 723 🖪	36 170	33 285	31 185	28 636	-0.6	-1.0
Electricity and heat sectors	12 513	14 943	15 262	13 311	10968	9 469	7 757	-1.9	-2.5
Other energy sector**	1 441	1616	1 579	1 585	1567	1 539	1 490	0.1	-0.2
Final consumption**	18 590	20 410	20 604	21 100	20601	20 043	19 288	0.3	-0.2
Coal	4 686	4 2 4 3	4 302	4 096	3927	3 760	3 400	-0.7	-0.9
Oil	9 0 2 0	9909	10 108	10 359	9 893	9421	9008	0.4	-0.4
Natural gas	2854	3 559	3 5 2 1	3 888	3 952	3 995	3991	1.4	0.5
Bioenergy and waste	71	123	124	12	116	112	103	-0.5	-0.7
Industry**	8313	9 183	9 207	9401	9 5 3 2	9468	9 0 98	0.4	-0.0
Chemicals**	50 4 1163	70 _{1 844}	1343	1 449	1 457	1 421	1306	1.1	-0.1
Iron and steel**	2 111	2 730	2 800 =	2 774	2737	2 686	2 509	-0.1	-0.4
Cement**	1916	2 408	2 356	2 366	2417	2 452	2 458	0.1	0.2
Aluminium**	175	248	250	263	266	265	266	0.7	0.2
Transport	6 965	7 944	8213	8 537	8 198	7 840	7 557	0.6	-0.3
Road	5 181	6 0 2 8	6 137	6221	5 799	5 378	5 0 2 7	0.2	-0.7
Passenger cars	2658	3 0 8 3	3 168	3011	2668	2376	2 137	-0.7	-1.4
Heavy-duty trucks	1518	1873	1898	2 136	2 168	2 154	2 190	1.7	0.5
Aviation	746	800	941	1 158	1266	1363	1 491	3.0	1.7
Shipping	792	836	856	900	883	854	806	0.7	-0.2
Buildings	2873	2842	2747	2 666	2 468	2 345	2 275	-0.4	-0.7
Residential	1961	1974	1904	1772	1611	1 500	1 380	-1.0	-1.2
Services	912	867	842	894	857	846	895	0.9	0.2
Total CO ₂ removals **	-	1	1	21	24	30	50	48	14
Total CO ₂ captured**	16	43	40	122	192	261	395	17	8.8

*Includes industrial process and flaring emissions.

**Includes industrial process emissions.

Source: IEA, "World Energy Outlook 2024", 2024

....

Direct Reduced Iron (DRI)

Reduction with H_2 3 Fe₂O₃ + H₂ -> 2 Fe₃O₄ + H₂O Fe₃O₄ + H₂ -> FeO + H₂O FeO + H₂ -> Fe + H₂O

Reduction with CO

- 70% of world steel production is based on the BF-BOF process
- 10% of the world iron production is based on the DRI process
- Switching from BF to DRI can decrease CO₂ emissions by 50%
 - \odot MIDREX: 16 GJ/t_{DRI} and 630 kg_{CO2}/t_{DRI} \odot Energirion: 15 GJ/t_{DRI} and 490 kg_{CO2}/t_{DRI}
- Goal: 1.4 -> 0.5 t_{CO2}/t_{crude steel}

 Material and process efficiency
 CCUS and hydrogen
 - Fuel shift

Metallization:
$$M[\%] = \frac{Fe_0 [kg]}{Fe_{tot}[kg]}$$
 90% < M < 96%

Carbon content:
$$C[\%] = \frac{C_{steel} [kg]}{Steel_{tot} [kg]}$$
 0.3% < C < 0.8%

Iron pellets $Fe_2O_3 -> Fe_3O_4$ Top gas Rich in H₂O CO₂ $Fe_3O_4 \rightarrow FeO$ FeO -> Fe **Reducing gas** Rich in H₂ CO Fe -> Fe₃C DRI

3

- Different reducing gas composition affects the kinetics of the reducing process
- Reducing reaction with H₂ have slower kinetics compared to CO, but the diffusion of the chemical species in the iron pellet is faster -> faster reduction of the iron pellet with H₂
- The overall reducing reaction with H₂ is endothermic while with CO it is exothermic -> the reducing gas inlet temperature has to increase with the concentration of H₂
- Low concentration of CO and CH₄ in the reducing gas can lead to low carbon content in the DRI

$$\frac{\partial X_O}{\partial t} = D(X_{H_2}, X_{CO}, D_{H_2}, D_{CO}) \cdot \frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dX_O}{dr} \right)$$

Source: C. Mapelli et al., "A Simplified Approach Based on Cellular Automata for Describing Direct Reduced Iron Production in Different Reducing Conditions", steel research int. 95, 2024, 2300411, DOI: 10.1002/srin.202300411

Energiron process

- Natural gas reforming occurs directly in the shaft furnace
- Natural gas is used as:

 Make-up of the reducing gas
 Cooling agent at the bottom of the furnace
 - \circ $\ensuremath{\text{Fuel}}$ of the process gas heater
- ~270 kg_{cO2}/t_{DRI} are removed
 from the top gas with a
 dedicated process (CO₂ ready to
 capture)

Source: R. Scaccabarozzi et al., "Technical analysis of highefficiency and flexible direct reduced iron plants integrated with high-temperature electrolysis", Journal of Cleaner Production 489, 2025, 144681, DOI: 10.1016/j.jclepro.2025.144681

SOEC thermodynamic principles

 $\Delta G = \Delta H - Q = \Delta H - T\Delta S$

 It is possible to use the thermal power generated by the losses to provide part of the energy required by the electrochemical reaction (ΔG), defining the thermoneutral voltage:

 $V_{tn} = \frac{\Delta H}{2 \cdot F}$

- Integration strategy:
 - Use the hot H₂O/CO₂-rich gas at the exit of the shaft furnace to feed the SOEC cathode side avoiding the need of generating steam
 - Use the hot cathode outlet stream as reducing gas make-up

Source: L. Mastropasqua et al., "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system", Applied Energy 261, 2020, 114392, DOI: 10.1016/j.apenergy.2019.114392

SOEC integration in DRI process

- Non-integrated: SOEC completely separated from the DRI plant
- Thermally integrated: the heat for the SOEC steam generation is produced in the process gas heater of the DRI plant
- Thermally and chemically integrated: part of the shaft furnace top gas is directly feed to the SOEC cathode
- Oxygen from the SOEC anode side used for the final partial oxidation of the reducing gas and as oxidant in the process gas heater
- Oxy-combustion in process gas heater for easy CO₂ capture at the stack

Source: R. Scaccabarozzi et al., "Technical analysis of high-efficiency and flexible direct reduced iron plants integrated with high-temperature electrolysis", Journal of Cleaner Production 489 (2025) 144681, DOI: 10.1016/j.jclepro.2025.144681

SOEC integration in DRI process

 LHV energy available from DRI C oxidation
 Air separation unit

Compressors and fans

Electric boiler

 SOEC electricity consumption
 NG LHV for combustor fuel
 NG LHV for reducing gas circuit make-up
 NG LHV for DRI cooling and carburization

 Equivalent CO₂ from DRI C oxidation
 CO₂ in oxy-combustor flue gas
 CO₂ separated from the reducing gas
 CO₂ at the stack Energy and CO₂ balances of the reference case and three proposed configurations with a SOEC operating pressure of 8 bar

Case	Reference	IN [8 bar]	TI [8 bar]	TCI [8 bar]	
SOEC (1 & 2) voltage [V]		1.29 1.32	1.29 1.34	1.23 1.27	
SOEC efficiency (LHV basis)		96.1%	96.0%	97.0%	
Metallization degree	95.0%	95.0%	95.0%	95.0%	
DRI carbon content	3.0%	0.9%	0.9%	0.9%	

- It is assumed to design the shat furnace to meet the metallization requirement of 95%
- Due to the low concentration of carbon in the reducing gas the carbon content of the DRI decreases to 0.9%_{wt}
- The thermally and chemically integrated case decreases the specific energy consumption below 8 GJ/t_{DRI}

Source: R. Scaccabarozzi et al., "Technical analysis of high-efficiency and flexible direct reduced iron plants integrated with high-temperature electrolysis", Journal of Cleaner Production 489 (2025) 144681, DOI: 10.1016/j.jclepro.2025.144681

Plant flexible operation

UNDED IN 2005

- Thermally integrated case analyzed for flexible operation with H₂ production/consumption, NG makeup, and part-load DRI production
- Operational mode:
 - Natural gas import (NG_{in}) Ο
 - Hydrogen import (H_{2 in}) Ο
 - Hydrogen export (H_{2 out}) Ο
 - Natural gas import + hydrogen export (NG_{in}H_{2 out}) Ο
 - DRI production load 100% and 60% Ο

Source: R. Scaccabarozzi et al., "Technical analysis of high-efficiency and flexible direct reduced iron plants integrated with high-temperature electrolysis", Journal of Cleaner Production 489, 2025, 144681, DOI: 10.1016/j.jclepro.2025.144681

Table: Energy and emission performance and DRI quality estimation (metallization and carbon content) of the thermally integrated DRI production plant with SOEC off-design operation, both considering full and 60% DRI production capacity.

		Product	quality			Energy			CO ₂ emissior
		Metallization	C content	Natural gas (ID 4 + 21)	H ₂ input (ID 20)	Electric consumption	Total energy consumption	H ₂ output (ID 39)	CPU (ID 52)
		%	%	GJ/t _{DRI}	GJ/t _{DRI}	GJ/t _{DRI}	GJ/t _{DRI}	GJ/t _{DRI}	kg _{CO2} /t _{DRI}
%	Base	95,0%	0,9%	0,9	-	7,6	8,4	-	17
- 100	NG _{in}	93,8%	1,1%	2,9	-	5,9	8,8	-	120
DRI full load	H _{2 in}	95,2%	0,9%	0,9	2,1	4,8	8,2	-	16
	H _{2 out}	95,1%	0,9%	0,9	-	8,5	9,4 (8,6)	0,8	16
	NG _{in} H _{2 out}	93,8%	1,1%	2,9	-	8,5	11,4 (9,2)	2,2	122
%	Base	97,3%	1,3%	1,2	-	7,4	8,6	-	22
- 60 <u>0</u>	NG _{in}	96,8%	1,5%	3,3	-	5,8	9,1	-	127
RI part loac	H _{2 in}	97,4%	1,3%	1,2	2,5	4,7	8,4	-	22
	H _{2 out}	97,3%	1,2%	1,2	-	14,2	15,4 (9,5)	5,9	23
	NG _{in} H _{2 out}	96,1%	1,5%	3,3	-	14,1	17,4 (10,1)	7,3	128

- Natural gas import (NG_{in})
- Hydrogen import (H_{2 in})
- Hydrogen export (H_{2 out})
- Natural gas import + hydrogen export

(NG_{in}H_{2 out})

DRI production load100% and 60%

Source: R. Scaccabarozzi et al., "Technical analysis of high-efficiency and flexible direct reduced iron plants integrated with high-temperature electrolysis", Journal of Cleaner Production 489, 2025, 144681, DOI: 10.1016/j.jclepro.2025.144681

30/05/2025

Electricity flow

Material flow Heat flow

H₂

storage

conditioning

Method Mixed-Integer Linear Programming (MILP) Curtailed Time window RES > One year horizon with 1-hour resolution Ħ **Objective function** Ø ➢ Minimization of the

Constraints

Energy and materia **Operational maps**

Fixed DRI productio

on of the total annual cost (TAC) d material balances from system p Il maps production of 2 Mt/y	Natural gas (reducing gas)	Hysteel plant SOEC + BOP Furnace CO ₂				
Flexibility option	Inflex.	fS	fS+fD	fS+NG	fS+fD+NG	- selection
SOEC flexibility and hydrogen storage		\checkmark	✓	\checkmark	\checkmark	
DRI shaft furnace flexibility			\checkmark		\checkmark	500
Natural gas as reducing gas				\checkmark	\checkmark	·

Dedicated RES

11

HySteel II - Demonstration of a SOEC Hydrogen Direct Reduction (HDR) at the Toledo, Ohio Steel Plant

OLITECNICO DI MILANO

ECNOPOLO PIACENZ

- Design and demonstrate iron Hydrogen Direct Reduction (HDR) and Hybrid-HDR systems at TRL 6
- Install and demonstrate the operation for at least 3600 hr of a 250 kW_{el}
 SOEC system at the existing 1.6 Mt_{DRI}/y facility in Toledo, OH
- Demonstrating the potential to reduce specific CO₂ emissions from ironmaking plants to <20 kg_{CO2}/t_{DRI}, and specific primary energy consumptions <8 GJ/t_{DRI}

12

- The current average DRI production plant requires around 10 GJ/t_{DRI}, mainly as chemical energy (LHV) of natural gas, to operate the DRI production unit while emitting 450 kg_{CO2}/t_{DRI}
- Even considering a non-integrated case (SOEC case), where the SOEC unit is completely separated from the DRI production system, the use of an electrolyzer to generate the reducing gas make-up stream and replacing the fuel for the preheating section can reduce the overall energy consumption to 9.4 GJ/t_{DRI}, and simultaneously reduce the CO₂ emission to 150 kg_{CO2}/t_{DRI}
- If the SOEC is integrated in the DRI production system (SOEC & CCS case), so that the furnace top gas is directly fed to the cathode side of the electrolyzer and the oxygen generated is used as oxidant by the combustor of the pre-heating section, the overall energy consumption can decrease to 8.0 GJ/t_{DRI}, and the greenhouse gas emission to 17 kg_{CO2}/t_{DRI}
- The integration of the SOEC electrolyzer to generate the reducing gas requires to **substitute the largest part of the chemical energy** (NG input of the reference case) **with electricity**
- To respond to variability of renewable energy sources, SOEC-DRI plants may adapt electricity consumption by increasing natural gas input, by importing/exporting hydrogen from/to a storage unit and by reducing DRI production
- Key parameter to be economically competitive is the sizing optimization of the various sections (RES, BESS, H₂ storage) and the system flexibility in term of load and energy source
- The HySteel II project will demonstrate the ability of the proposed system to achieve the decarbonization targets

S. Department of Energy

U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy

OScole H2@Scale Hydrogen and Fuel Cell Technologies Office

Acknowledgement: this research is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies, Award Number DE-EE0009249

Disclaimer: the views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government

The authors thank the Advanced Power and Energy Program team at UCI for the project coordination

Thankyou for your attention

Contacts:

roberto.scaccabarozzi@polimi.it maurizio.spinelli@polimi.it

